Spezialist für NaturwissenschafterInnen
  • Spezialist für NaturwissenschafterInnen

  • Netzwerke für NaturwissenschafterInnen

Job on the Top

Abbildung 1 higherres 150pxDie Arbeitsgruppe um den Chemiker Nuno Maulide von der Universität Wien hat eine neue Methode der Bindungsknüpfung zwischen zwei Kohlenstoffatomen entwickelt. Dabei wird die natürliche Polarität der reagierenden Gruppe durch simples Reaktionsdesign umgekehrt und macht somit den Weg frei für völlig neue Reaktionen. Foto: (c) Maulide Group/Universität Wien

Chemie: Aus Minus mach Plus
Neben der Entwicklung der neue Methode der Bindungsknüpfung zwischen zwei Kohlenstoffatomen konnten Forscher außerdem zeigen, dass sich durch diese Innovation bekannte Synthesewege bedeutend verkürzen lassen. Die Ergebnisse erscheinen aktuell im renommierten Fachmagazin "Angewandte Chemie".
 
Viele der wichtigsten chemischen Reaktionen, inklusive jener in unserem Körper, lassen sich auf simple Regeln der Polarität zurückführen. Analog zu unterschiedlich geladenen Alltagsgegenständen wie Magneten haben auch geladene Atome und Moleküle Anziehungskräfte untereinander. Diese Interaktionen stehen im Zentrum der organischen Chemie, jener Disziplin, die seit etwa 200 Jahren viele Moleküle unseres täglichen Lebens herstellt und entwickelt – seien es Pharmazeutika, Kosmetika, Solarzellen oder Konservierungsstoffe.
 
Alles hat intrinsische Polarität…
Chemische Verbindungen haben sogenannte intrinsische Polarität. Positiv geladene Gruppen werden als "Elektrophile" bezeichnet (da sie negativ geladene Elektronen anziehen), während negativ geladene Gruppen "Nucleophile" genannt werden (da sie den Nucleus, den in der Atomtheorie positiv geladenen Kern, anziehen).
 
… aber man kann sie auch umkehren!
Ein spezieller Ansatz in der Chemie ist die Umkehrung der intrinsischen Polarität eines Moleküls oder Atoms. Dieses Konzept wurde in den 1960er Jahre vom deutschen Chemiker Dieter Seebach entworfen und entwickelt – und in weiterer Folge unter dem Namen "Umpolung" weitläufig bekannt und eingesetzt. "Was wir jetzt erreicht haben ist eine neue Art der Umpolung, so wie sie bisher nicht möglich war", sagt Daniel Kaiser, Doktorand an der Fakultät für Chemie und Erstautor der Studie: "Es ist uns unter einfachen und reproduzierbaren Bedingungen gelungen, einen Teil eines Moleküls, der normalerweise nucleophil ist, in ein Elektrophil zu verwandeln", so Kaiser. "Das ermöglicht uns die Entwicklung einer breiten Palette neuer chemischer Reaktionen. Und: Diese Polaritätsumkehr eröffnet neue Synthesewege und Ansätze beim Planen einer synthetischen Sequenz", erklärt Maulide weiter.
 
ChemikerInnen planen mehrstufige Synthesen neuer oder bekannter Moleküle auf Basis bekannter Reaktionen und Reaktivitätsmuster – durch neue, unkonventionell polarisierte Bausteine kann ein Paradigmenwechsel eingeleitet werden, der völlig neue Ansätze und Ideen zulässt. Ein solcher neuer Ansatz zur Kohlenstoff-Kohlenstoff-Bindungsbildung ist der Maulide-Gruppe in der vorliegenden Arbeit gelungen.

Unkonventionelle Forschung
"Diese neue Reaktion wirkt auf den ersten Blick unkonventionell. Aber unsere Forschungsgruppe hat schon einige Erfahrung mit ungewöhnlichen Reaktionen – demnach passt es ins Gesamtbild, dass wir nun eine weitere 'eigenartige', aber potenziell sehr nützliche Transformation gefunden haben", sagt Maulide: "Darin liegt der Wert der Grundlagenforschung: Wir stellen unkonventionelle Fragen, unabhängig etwaiger praktischer Anwendungen".
 
Im Fall von McN-5652 konnten Maulide und sein Team einen hochpotenten bioaktiven Stoff mit Anwendungen im Neuroimaging einfach und schnell herstellen. "Wer weiß, welche Fortschritte diese Entdeckung vielleicht noch bringt", so der portugiesische Chemiker.

Publikation in "Angewandte Chemie"
"Metallfreie formale oxidative C-C-Kupplung durch In-situ-Erzeugung einer elektrophilen Enoloniumspezies"
Daniel Kaiser, Aurélien de la Torre, Saad Shaaban and Nuno Maulide,
in: Angewandte Chemie, 2017.
DOI: doi/10.1002/anie.201701538
http://onlinelibrary.wiley.com/doi/10.1002/ange.201701538/abstract

Quelle: Universität Wien

Kontakt:
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-602 77-521 55
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

Partnerbanner

Universitäten forschen

Licht in Flaschen abgefüllt

Wer glaubt, Lich in Flaschen abzufüllen wäre ein "Schildbürgerstreich" der hat weit gefehlt. Die Quantenoptik zeigt, wie man es macht und wozu es verwendet wird. Lichtwellen schwingen im rechten Winkel zu ihrer Ausbreitungsrichtung – so lernt man es in der Schule. Doch an der TU Wien verwendet man nun longitudinal schwingendes Licht für Atom-Experimente. Foto (c) TU Wien

 

 

 

Weiterlesen...

Rund um die Karriere

build! Business Idea Lab and Development Kärnten

Chancen und Risken bei der Unternehmensgründung

Frau Mag. Ibovnik, build! Business Idea Lab and Development Kärnten Eigene Ideen umzusetzen und sich dadurch selbst zu verwirklichen, sein/e eigene/r Chef/in zu sein, seine Arbeitszeiten flexibel gestalten zu können, die Entscheidungen in der eigenen Hand zu haben und die Möglichkeit zu haben nach einigen Jahren ein gut funktionierendes Unternehmen mit einigen Mitarbeitern/innen in die Welt gesetzt zu haben - das sind Argumente, die für ein eigenes Unternehmen sprechen.
Weiterlesen...

Find us on Facebook